## Flatten Binary Tree to Linked List

Given a binary tree, flatten it to a linked list in-place. For example, Given 1 / \ 2 5 / \ \ 3 4 6 The flattened tree should look like: 1 \ 2 \ 3 \ 4 \ 5 \ 6

Technical Interview Preparation guide

Given a binary tree, flatten it to a linked list in-place. For example, Given 1 / \ 2 5 / \ \ 3 4 6 The flattened tree should look like: 1 \ 2 \ 3 \ 4 \ 5 \ 6

Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a number. An example is the root-to-leaf path 1->2->3 which represents the number 123. Find the total sum of all root-to-leaf numbers. For example, 1 / \ 2 3 The root-to-leaf path 1->2 represents the number 12. The root-to-leaf path 1->3… Continue Reading Sum Root to Leaf Numbers

Given a binary tree, return all root-to-leaf paths. For example, given the following binary tree: 1 / \ 2 3 \ 5 All root-to-leaf paths are: [“1->2->5”, “1->3”]

Given a binary tree and a sum, find all root-to-leaf paths where each path’s sum equals the given sum. For example: Given the below binary tree and sum = 22, 5 / \ 4 8 / / \ 11 13 4 / \ / \ 7 2 5 1 return [ [5,4,11,2], [5,8,4,5] ]

Given a binary tree and a sum, determine if the tree has a root-to-leaf path such that adding up all the values along the path equals the given sum. For example: Given the below binary tree and sum = 22, 5 / \ 4 8 / / \ 11 13 4 / \ \ 7… Continue Reading Path Sum

Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BST. According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we… Continue Reading Lowest Common Ancestor of a Binary Search Tree

Given a binary tree, find the lowest common ancestor (LCA) of two given nodes in the tree. According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a… Continue Reading Lowest Common Ancestor of a Binary Tree

Given a binary tree, find its minimum depth. The minimum depth is the number of nodes along the shortest path from the root node down to the nearest leaf node.

Given a binary tree, find its maximum depth. The maximum depth is the number of nodes along the longest path from the root node down to the farthest leaf node.

Given a binary tree, return the postorder traversal of its nodes’ values. For example: Given binary tree {1,#,2,3}, 1 \ 2 / 3 return [3,2,1]. Note: Recursive solution is trivial, could you do it iteratively?